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YEAR ONE

TOTAL (YEAR ONE) $167,266

During Year One, I brought a complete new ultra-high vacuum (UHV) system equipped

with a specimen manipulator, an At+ ion sputterer, a low energy electron diffraction

(LEED) system, an Auger electron spectrometer (AES), a work function (WF)

measurement device with a Kelvin probe and related accessories. The total cost of these

items is approximately $170,000. The UHV system with the specimen manipulator, At+

ion sputterer and related accessories was obtained through other sources, totaling

approximately $100,000. In addition to the above surface analysis techniques of LEED,

AES, WF, and some accessories such as thermocouples, Ta, Ni and W wires, Ta foils of

different thicknesses, pure gases, etc., were also purchased through the present grant

(within the equipment budget).

On July, 1993, I visited the Photovoltaic Laboratory at NASA Lewis Research Center,

where I gave a talk on "Alkali Adsorption on Layered Compounds". After extensive

discussions with the staff, it was agreed that the thrust of our research efforts should be

redirected to support pressing problems within the Photovoltaic group. We agreed

specifically to study the Adsorption of chalcogenides on Si and 111-V compound
semiconductors.

On September 1993 1 started receiving the ordered equipment; the UHV system and

surface analysis techniques; an Auger electron spectrometer (AES), a Kelvin probe for

work function (WF) measurements and a low energy electron diffraction (LEED) system.

By the end of the year 1993 all the purchased equipment were put together, and the UHV

system was brought to acceptable operating condition.

Much of the necessary equipment, however, was not available such as voltmeters, power

supplies, an oscilloscope, chart recorders, computers, liquid nitrogen and other pieces.

For a few days a week, we borrowed meters from the students' laboratory at Clark Atlanta

University. The Photovoltaic group at NASA Lewis Research Center gave us some

specimens of Si(100). In addition, Professor M. Kamaratos came from Greece on four-

month sabbatical, and the first Master's Degree graduate student, Aris Papageorgopoulos,

joined the group. And we thus began the _oposed investigation.

In the meanwhile, the continuation proposal for Year Two had been approved.



YEAR TWO

TOTAL (YEAR TWO) $181,511

During Year Two, we ordered a scanning tunneling microscope (STM) fro $116,000, a

quadrapole mass spectrometer, power supplies, a computer, a chart recorder, micro-

voltmeters, a thickness monitor, an evaporator with its power supply (for GaAs and InP

deposition), and related accessories. The total cost of these items was approximately

$175,000. Most of the items, other than the STM and some accessories, were obtained

through other sources totaling approximately $55,000.

Meanwhile, according to the collaboration agreement with the Photovoltaic group at

NASA, we started the systematic study on the adsorption of chalcogenides on Si and III-

V compound semiconductor surfaces. The study took place in the UHV with the available

techniques ofLEED, AES and WF measurements.

Specifically, we started with in in-situ adsorption study of elemental S on Ni(100). I

would like to note that this is the first time that elemental sulfur, as opposed to sulfur

compounds such as H2S, is deposited at RT. This innovation supports a preliminary

experiment with a prototype substrate such as Ni(100). The knowledge of the behavior of

S on Ni is of particular interest due to the poisoning effects of S on catalytic reactions

occurring on Ni surfaces. The results have been published in the Journal of Surface

Science (see reference 1).

Next, we continued with the study of: "Adsorption (passivation) of elemental S on

Si(100)2xl Surfaces". This study was also part of the thesis of Aris Papageorgopoulos.

Part of the results have been presented: at the 15th European Conference of Surface

Science, ECOSS-15, September, 1995, Lille, France, with the title "Adsorption of

elemental S on Si(100)2xl surfaces", Aris Papageorgopoulos, M. Kamaratos. The same

work with the same title has been accepted for publication by the Journal of Surface

Science (reference 2).

Additional results of S on Si(100)2xl surfaces were presented at the Mat. Res. Soc.

Meeting, December, 1995, Boston, Massachusetts, with the title "Passivation of

Si(100)2xl surfaces with elemental sulfur", Aris Papageorgopoulos. This paper has also

been accepted for publication in the Proceedings of Material Research Society Journal

(reference 3).

After completion of the study of S on Si(100)2x 1 surfaces, the results have been

submitted to Physical Review B (reference 4).

Meanwhile, at the end of the second year, we received the STM and the quadrapole mass

spectrometer, which we started to install.

In the mean time, the continuation proposal for Year Three has been approved.



YEAR THREE

TOTAL (YEAR THREE) $154,868

During this year we mounted the Scanning Tunneling Microscope (STM) on the existing

UHV system. Then we tried to get familiar with the specific type of STM and bring it to

acceptable operating conditions.

This year we bought a Hemispherical Analyzer for XPS-UPS measurements for $81,250,

which is mounted to a new UHV system, which is specially designed for XPS-UPS

measurements. The UHV system has been obtained through other sources.

Now going back to research, the investigation continues with the adsorption of Cs (alkali)

on S-covered Si(100)2xl surfaces. This was also the second part of Aris

Papageorgopoulos' thesis. The first results have been submitted for publication to Journal

of Surface Science (reference 5).

Subsequent results of Cs on S-covered Si(100) surfaces have been presented to the

International Conference on the Structure of Surfaces, July 8, 1996 (Aix-en Provence,

France). The title of this work was: "The behavior of Cs on S-covered Si(100)2xl and

Si(100)lxl surfaces". The same paper, with the same authors, has been submitted to

Surface Physics Review (reference 6).

The research activities continued with the adsorption of S on Cs-covered Si(100) surfaces.

This work has been completed, it will appear in the thesis of our second graduate student,

Adero Comer. The most important results of this work will be submitted for publication.

Presently, the third graduate student, Dwight Mosby, is working with the STM system and

specifically he tries to confirm the proposed structure models of S and Cs on Si(100)
surfaces.

In the near future, we are going to continue with GaAs and InP substrates.
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Abstract

We have studied the adsorption of elemental S on Ni(100) surfaces by LEED, AES, TDS and WF measurements in

UHV. We compared the measurements to those of reported investigations, most of which used HzS as sulfur source. The

elemental S, at room temperature, is grown on Ni(100) in a layer by layer mode. Sulfur forms the 1:)(2 x 2), initially, and

subsequently the 6(2 x 2) structure at the completion of the first S layer. The second layer is disordered. These findings are

in contrast with most of the published papers which report that the S on Ni(100) saturates in the first layer, its sticking

coefficient decreases drastically and it does not desorb before 1200 K. Deposition of S, at RT, increases the work function of

Ni by 0.25 eV. Heating before the desorption temperature (1100 K) of S causes: (a) a rearrangement of Ni atoms with a

possible diffusion of Ni from the bulk to the surface, having the tendency to interact with the S overlayer and (b) an increase

of the WF change close to 0.4 eV, the value reported after the exposure of Ni(100) to H2S and subsequent heating. The AES

and WF variation are related to a recently reported difference in electronic structure between the p(2 X 2)S and 6(2 X 2)S

structures.

Keywords: Auger electron spectroscopy; Low energy electron diffraction (LEED); Nickel; Silicon; Thermal desorption spectroscopy; Work
function measurements

1. Introduction

The adsorption of sulfur on nickel surfaces has

been extensively studied in the past. The knowledge

of the behavior of S on Ni is of particular interest.

This is due to poisoning effects of S on catalytic

reactions occurring on Ni surfaces [1-3], and the

recent finding that sulfurization treatment is very

important in the passivation of different surfaces

[4-6]. The adsorption sites of S atoms, the changes

of the electronic properties of the surface, and the

substrate relaxation after S deposition on Ni surfaces

• Corresponding author.

1 Permanent address: Department of Physics, University of

loannina, P.O. Box 1186, GR-451 10 loannina, Greece.

have been studied by a variety of surface analysis

techniques [7-10].

Despite the amount of research, there are still

questions about the S-Ni system. Most of the S

adsorption studies, up to now, have taken place with

the exposure of the substrate surface to H2S gas. To

remove the H 2 from the surface the substrates were

heated to equal or greater than 200°C [10-15]. The

role of hydrogen and subsequent heating on the

growth mode of S alone on Ni(100), however, is not

known. For a detailed understanding of the adsorp-

tion kinetics of S on Ni surfaces at room tempera-

tures and lower, it is important to deposit elemental

sulfur.

In this work we evaporate elemental sulfur on

Ni(100) surfaces• We study the sample using low

003%6028/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSD1 0039-6028(95)00489-0
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energy electron diffraction (LEED), Auger electron

spectroscopy (AES), thermal desorption spec-
troscopy (TDS), and work function (WF) measure-

ments. The measurements suggest kinetics of S and

Ni interaction during S deposition at room tempera-

ture (RT) and subsequent heating of Ni(100) sub-

strates which are reported for the first time.

2. Experimental

The experiments were performed in an ultra-high

vacuum chamber (p < 10 -l° Tort), equipped with a

cylindrical mirror analyzer (CMA) for AES and

EELS measurements, a quadrupole mass spectrome-

ter (QMS) for TDS measurements, a Kelvin probe

for WF measurements and a LEED system.

Elemental sulfur was evaporated by thermal dis-

sociation of MoS 2 single crystal flakes mounted on a

tungsten filament. During dissociation of MoS 2 the

Mo remained on the tungsten filament, while S was

evaporated. The Ni(100) substrate was cleaned by
Ar ÷ bombardment (1 kV, 5 /zA) for 20 min and

subsequent annealing at about 1000 K. This cycle

was repeated several times until the AES peak heights
of the main impurities (carbon and sulfur) were

almost negligible. The temperature of the sample

was measured by a Cr-AI thermocouple calibrated

with an infrared pyrometer in the range of 900-1200
K.

3. Results and discussion

Fig. 1 shows the Auger peak-to-peak heights

(Ap-pH) of S(151 eV), Ni(61 eV) and their Auger

peak-to-peak height ratios, S(151 eV)/Ni(61 eV), in

correlation with the LEED patterns, as a function of

doses of S deposition. It is obvious, from this figure,

that the S/Ni ratio increases linearly with increasing

number of S doses, with a break (slope change of the

S/Ni ratio versus S doses curve) occurring at 13

doses. The peak-to-peak height of Ni(61 eV) de-

creases analogously with a break occurring at 13

doses of S. The peak-to-peak height of S(151 eV)

also increases linearly with increased doses of S. The

latter, however, forms two breaks. The expected at

13 doses, and an extra one at 6 doses of S deposi-
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Fig. 1. Auger peak-to-peakheight (Ap-pH) of $(151 eV), Ni(6!
eV) and their Auger peak-to-peak height ratios,S(151 eV)/Ni(61
eV), in correlation with the LEED patterns, as a function of S
deposition doses.

tion, with a smaller change of the slope than that at
13 doses.

The LEED observations show the well-known

patterns of p(2 × 2) and c(2 × 2) with maximum

spot intensities at 6 and 13 doses of sulfur, respec-

tively. We assume that the corresponding S cover-
ages, _gs, at the completion of the above structures

are 0.25 and 0.5 monolayers. These results suggest

that the sticking coefficient of S on Ni(100) is

constant, at least up to 13 doses (8 s = 0.5). Previous

measurements, with H2S as the sulfur source, have

shown that the sticking coefficient of S on Ni(100)

surfaces decreases drastically with S deposition

[10,16-18]. Partridge et al. specifically, have re-

ported that the p(2 × 2) and c(2 × 2) sulfur overlayer

structures were obtained at room temperature, by

dosing the clean Ni surface, correspondingly, with 1

and 50 L of H2S [10]. Hardergree et al. [11], also

using an H2S source, reported that the value of the

S(152 eV)/Ni(61 eV) Auger peak-to-peak height

ratio at (9s = 0.5 was found to be 1.23, which was

very close to the ~ 1.26 value reported in this work.
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Blaszczyszyn et al. [12] used sulfur ampoules to
deposit S on Ni wires (field emitters). From field

electron microscopy (FEM), they obtained the infor-

mation that the sticking probability of S on the Ni

specimen was approximately unity. A. correlation of
this information with our LEED and AES measure-

ments suggest that, for the first layer, 1 dose of S is

about equal to 0.04 ML.

According to Fig. 1, after the completion of the
c(2 x 2)S structure, the S/Ni ratio and the S(151

eV) peak-to-peak height continue to increase linearly

with a smaller slope (break), even above 30 doses.

The break indicates the growth of a second S layer.
It is well known that these kind of breaks are charac-

teristic of layer by layer growth. The substantial

decrease in slope of the Auger curve of S during the

second layer formation (Fig. 1), and the fact that we

did not reach the completion of the second layer at

the 30th S dose - approximately three times the

quantity of doses required for the formation of the

first layer - may imply that the sticking coefficient
of S in the second layer is smaller than that of the

first layer.

The formation of the second layer is consistent

with the LEED observation that the deposition of S

above 13 doses (O s > 0.5) causes an increase of the

background in the pattern. The spots of the c(2 x 2)

become diffused, which further suggests that the

grown second layer of S is disordered. This finding,

however, does not agree with most of the published
results. These, latter, report that the saturation S

coverage on Ni(100) is established at about 0.5 ML

[16-18]. It is most likely, that the kinetics of adsorp-

tion and/or interaction of the deposited elemental S
on the Ni substrate at RT are not quite the same as

those during the exposure of the Ni to H2S and
subsequent heating [10,11,16-19].

The first (extra) break of the S(151 eV) Ap-pH

versus S doses curve, at the completion of the p(2 X
2)S pattern (6 doses) may be attributed to a substan-

tial difference between the p(2 X 2) and c(2 x 2)

phases. We believe that this pertains to the signifi-

cant change in the surface electronic structure of

c(2 X 2), reported in the recently published STM

measurements by Partridge et al. [10].

Fig. 2 shows, Aq), the change of the work func-

tion (WF) during S deposition on Ni(100) surface.

The WF increases with the increasing S coverage up
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Fig. 2. Work function change, Aq_, during S deposition on
Ni(100) surface.

to O s = 0.5, and remains relatively constant with

further S deposition. At _9s = 0.25 the WF curve
forms a small plateau, with Aqb= 0.17 eV, and

subsequently increases again up to O s = 0.5, where
the WF levels off at Aq_ ----0.25 eV. These values are

less than those reported for the same S coverages on

Ni(100) in other work. Specifically, Hardgree et al.

measured &q_= +0.40 eV at O s-- 0.5 [11]. The

initial plateau near the formation of the p(2 X 2)

LEED pattern, and the subsequent abrupt increase of
the WF with the growth of the c(2 X 2) has not been

reported before. After reaching the final WF value
the Ni substrate was heated to 800 K and the WF

change increased to ~ 0.35 eV (Fig. 2). This value
is very close to the saturation values measured after

the exposure of the Ni(100) surface to H2S and
subsequent heating [11]. The abrupt increase of the

WF during the transition from the p(2 X 2) to the

c(2 × 2) phase may owe itself to a change in surface
electronic structure [10].

Fig. 3 shows the variation of the Auger peak-to-

peak height of the S(151 eV) and Ni(61 eV) peaks

and their ratio S(151 eV)/Ni(61 eV) of nearly two
layers of S covered the Ni(100) surface as a function

of substrate temperature up to 1100 K. The experi-

mental conditions did not allow us to go higher than

1150 K. As it is seen in this figure, the peak-to-peak

height of the S(151 eV) Auger peak remained almost

constant up to 1000 K. It started to decrease above

this temperature by about one tenth of its initial

height at 1100 K. The Ni(61 eV) peak-to-peak height,

however, increased almost linearly from the begin-
ning of the heating. This increase became more
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Fig. 3. Variation of the Auger peak-to-peak height of the S(151

eV), Ni(61 eV) peak and their ratio S(151 eV)/Ni(61 eV) of

nearly two layers of S covered the Ni(100) surface as a function

of substrate temperature up to 1100 K.

abrupt above 1000 K, where the S peak started to
decrease. The S(151 eV)/Ni(61 eV) Auger ratio

decreased in proportion to the increase of the Ni(61

eV) peak. It appears that sulfur started to leave the
surface at about 1000 K. This is consistent with the

thermal desorption measurements shown in the next

figure. The unexpected continued increase of the

Ni(61 eV) peak from the beginning of the heating,
when the S was not yet removed from the surface

may be attributed to a rearrangement of the surface.

Most likely, heating provides the activation energy
for the Ni atom to diffuse from the bulk to the

surface. The diffused Ni interacts with the S atoms,

possibly of the second layer, with the tendency to

form a disordered overlayer of a sulfide. The diffu-

sion should occur in a way that minimizes the mask-

ing of S atoms by the outgoing Ni atoms. The S
atoms are smaller than those of Ni and diffusion of

the latter in between the S atoms of the c(2 × 2)S, in

the first layer, may cause an increase of the Ni Auger

peak height. The behavior of elemental sulfur on

Ni(100) is quite similar to that of O 2 on Ni(100).

Adsorption of oxygen on Ni(100) at RT forms a

c(2 × 2) with the completion of the first layer of

oxygen and then a thin film of Ni-oxide [20].

At 1100 K the S/Ni Auger peak-to-peak ratio is

reduced to about one, and the LEED pattern shows a

c(2 × 2) with sharp spots. This means that at 1100 K

the second layer of S is desorbed while the first
monolayer with the c(2 × 2) structure remains on the

surface after heating to 1100 K. This is consistent

with the following correlation of the TDS measure-
ments and LEED observations.

Fig. 4 shows a series of S 2 (amu 64) of thermal

desorption spectra for different amounts of S de-

posited on Ni(100) surfaces. The heating rate of

desorption was constant for all spectra. There is a

sharp peak in the 1050-1150 K range. This peak

appears only for S deposition higher than 12 doses or
@s > 0.5. The S (amu 32) exhibits the same behav-

ior, but its TD peak is substantially smaller. After the

heating up to 1150 K the LEED pattern shows a

sharp c(2 × 2) as in the case of AES and LEED

correlation during heating (Fig. 3). According to our

knowledge, this peak has not been reported before.

Most of the experimental publications on the
S/Ni(100) system report that sulfur desorbed from

Ni(100) at 1500 K. Specifically, Hardergree et al.

[11] report that the chemisorbed sulfur resulting from
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H2S dissociation did not desorb upon heating to

1200 K. Blaszczyszyn et al. [12] reported that sulfur

desorbed from Ni only at temperatures above 1500
K. As we mentioned earlier, the latter authors used a

Ni tip as a substrate and applied field emission

microscopy (FEM). They related the desorption of S

with the temperature (1500 K) of complete removal

(cleaning) of sulfur from the surface.

The TDS measurements suggest that the binding

of S on Ni(100) is characterized by two adsorption

states: the known high energy (1500 K) [11,12] and

the low energy (_ 1100 K) state. The high energy

state is attributed to the first layer with the c(2 × 2)S

structure, while the low energy state is due to the

second layer of sulfur. The low energy TD peak of S

might be due to a dissociation of a sulfide overlayer.

We did not observe any TD peak of Ni-S complex

other than that of S. Using a simple Redhead formula

[21], and assuming a pre-exponential factor of 1013

s-t, we calculated the binding energy of the second

layer of S on Ni(100) (_s > 0.5), to be 3.5 eV. For

the first layer the activation energy of desorption was

found to be in the 4-4.3 eV range [10,22]. The areas

under the thermal desorption peaks in Fig. 4 have

been observed to increase linearly with increasing
number of S doses. It is known that for constant

heating rates, these areas are proportional to the

adsorbate's coverage, and the slope of the areas

under TD peaks versus S dose curve is proportional

to the sticking coefficient. The linear increase of the

peak areas in Fig. 4 with increasing number of S

doses, therefore, suggests that the second layer of S

on Ni(100) is deposited with a constant sticking
coefficient.

4. Summary

was disordered. When S is deposited on Ni(100) it

appears in two adsorption states. The known high

energy state at 1500 K, where S is completely de-

sorbed from Ni, and the low energy state at ~ 1100

K, with a binding energy of 3.5 eV, due to the

desorption of the second S layer. The sticking coeffi-

cients of S in the first and second layers, respec-
tively, were constant. These findings are in contrast

with most of the published papers which report that

the S saturates in the first layer, its sticking coeffi-

cient decreases drastically [1,16-18], and S does not
desorb from the surface before 1200 K [12].

Heating of the S/Ni(100) system caused a rear-

rangement of Ni atoms near the surface. There was a

possible diffusion of Ni outward, before any removal

of S from the surface. Heating, most likely, provides

the activation energy for Ni to diffuse from the bulk

to the surface. There it may tend to interact with the

S overlayer to form some sulfide. We found the final

WF change, with S deposition on Ni(100) at RT, to

be 0.25 eV. Subsequent heating to 800 K, however,
increased the WF close to, 0.4 eV. This latter is the

reported value after exposure of Ni(100) to H2S,

followed by heating to 300°C [11]. Finally, the AES

and WF variations agree with the different electronic

structure of the c(2 X 2)S structure as compared to
the p(2 x 2)S [10].
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We have used a correlation of LEED, AES, TDS

and work function measurements in UHV to study

the deposition of elemental sulfur on Ni(100) sur-

faces. We compared the measurements to those of

reported investigations, most of which used H2S as
sulfur source.

Elemental S was grown on Ni(100), at RT, in a

layer by layer mode. Sulfur formed, initially, a p(2

X 2) and subsequently a c(2 X 2) structure with the

completion of the first layer, while the second layer
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Abstract

We have studied the adsowtion of elemental S on Si(100)-2 x 1 surfaces by LEED, AES. TDS, and WF measurements in

UHV. The adsorption of S at room temperature causes the surface restoration of the reconstructed Si(100)-2 X 1 substrate to

its original bulk-terminated surface, Si(100)-1 x 1. The S adsorbate follows the substrate structures, i.e. it forms initially a

(2 × 1) up to 0.5 ML and subsequently a (I × 1). Above I ML, sulfur is imbedded into the Si bulk near the surface. The

sticking coefficient of S on Si(I00) surface is constant, S = 1, up to 2 ML. Deposition of S at RT up to I ML increases the

WF of the surface by about 0.30 + 0.05 eV. Above I ML, as the S is diffused into the Si bulk, the WF decreases. The TDS

measurements show that S is desorbed as SiS molecule with a single TD peak near 585°C. This may indicate that the Si-S

hnnd energy is greater than that of Si-Si which may be the dominant cause of the substrate restoration.

Keyworas: Adsorption kinetics; Atom<;olid interactions, scattering, diffraction; Auger electron spectroscopy; Chemisorption; Low energy

electron diffraction (LEED); Low index single crystal surfaces; Semiconducting surfaces; Siliconl 3ulpbides; Surface electronic phenomena;

Thermal desorption spectroscopy; Work function measurements
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1. Introduction

Silicon as well as other semiconductors (GaAs,

InP) have demonstrated great value, along with their

importance in microelectronics and optoelectronics

[1,2], as sources of power (solar cells) for space

exploration [3].

The knowledge of the behavior of S alone on the

above semiconductors and specifically on Si is very

important because of the interest which has arisen

with respect to the possibility of pretreating the

surfaces of the semiconductors with S to protect and

stabilize these surfaces against degradation which

• Corresponding author. Fax: +30 651 45381.
I Permanent address: Department of Physics, University of

loanntna, P.O. Box 1186, GR-451 10 [oannina, Greece.

may reduce their efficiency as solar cells or other

devices [4,5].

In addition to the importance in applications, there

is a recent rising scientific interest on the structural

and electronic properties of chalchogen elements (S,

Se) on Si(100)-2 × i surfaces. Theoretical calcula-

tions suggest that chalchogen adsorbates change the

structure of the Si(100)-2 X 1 surfaces [6,7]. Accord-

ing to our knowledge, this does not agree with the up

to-date relevant experimental results. More specifi-

cally, the Si(100) surface is easily reconstructed with

a small amount of heating. The clean Si(100) surface

shows a strong (2 x 1) reconstruction in the LEED

pattern. This has been observed for the first time by

Schlier and Farnsworth in 1959 [8]. It has been

recently accepted by most researchers that dimers are

the main building blocks of the reconstructed surface

0039-6028/96/$15.00 © 1996 Elsevier Science B.V. All fights reserved

SSDI 0039-6028(95)01161-7
_ted in The Netherlands
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of Si(100) [9]. The question, however, whether the

dimers are symmetric or buckled remains unclear, as

reported by Cbadi [10]. Today, new evidence of
asymmetric dimers is supported by most of the ex-

perimental [11-15] and theoretical [6,7] investigators
who have '.vo:-Lzedon this p",:hl'_m. Kruger and Poll-

man [6] calculated that buckled dimers are energeti-

cally favored over symmetric ones by 0.14 eV per

dimer [6]. The restoration of reconstructed semicon-

ductor suriaces to their original bulk-terminated sur-

face has been achieved, lately, by different adsor-

bates other than S on Si (100) [16-19]. Adsorption

of S on clean Ge(100)-2 × 1 changed the (2 × l)

structure to (1 × 1). The system S/Ge(I × 1) was

regarded as an ideal terminated surface [20]. The

same authors [21] have. experimentally, investigated

the behavior of S on Si(100). They have not ob-

served an ordered S adlayer. Moriarty et al. [22]

reported, recently, that room temperature adsorption

of sulfur resulted in the formation of an overlayer

with the underlying Si(100) retaining the 2 X ' re-

construction. They also mentioned that annealing of
the S/Si(100)-2 × 1 surface to 325°C leads to the

desorption of the sulfur overlayer and the appearance

of coexisting c(4 × 4) and (2 × 1) surface recon-

:<truction. In contraat to tlzis report, theoretical studies
performed by Kaxiras ['/], and tater by Kruger and

Pollman [6], suggested that adsorption of group VI
elements (S or Se) on Si(100)-2× 1 can lead to

restoration of the ideal bulk-terminated geometry on
the semiconductor surfaces. From the above discus-

sion it is apparently clear that additional effort on the
study of S and Se on Si(100)-2 × 1 is necessary.

In this work we evaporate elemental sulfur on

Si(100)-2× 1 surfaces. The data suggest that the

presence of sulfur adsorbate on the surface changes
the surface structure of the Si(100)-2 × 1 substrate.

2. Experimental procedure

The experiments were performed in an ultrahigh

vacuum chamber (p < 10 -I° Ton'), equipped with a

cylindrical mirror analyzer (CMA) for AES measure-

ments, a quadrupole mass spectrometer (QMS) for

TDS measurements, a LEED system, and a Kelvin
probe for work function (WF) measurements.

Elemental sulfur was evaporated by thermal dis-

sociation of MoS 2 single crystal flakes mounted on a

tungsten filament. During dissociation of MoS 2 the
Mo remained on the tungsten filament, while S was

evaporated. The Si(lO0) substrate was cleaned by
Ar"- bombardment at E= 1 keV for 40 rain with an

ion current of 10 u,'_. After bombardment the sam-

pie was heated to 1000°C by passing current through
a 0.05 mm Ta strip, uniformly pressed between the

sample and a Ta foil case. The temperature of the

sample was measured by a Cr-AI thermocouple. The

Si specimen was considered sufficiently clean when

the Auger peak height ratios C(272 eV)/Si(92 eV)
and O(512 eV)/Si(92 eV) were below 1%. The

surface atomic density of I monolayer of S on
Si(100) is considered equal to that of the outermost

layer of Si, Ns_ = 6.8 × 10 ''_ atoms cm -_.

3. Results

Fig. 1 shows the Auger peak-to-peak heights
(Ap-pH) of the S(151 eV) and of the Si(92 eV) as a

function of the number of doses of S deposited on

clean Si(100)-2 ×1 surfaces at room temperature.
These are in correlation with the observed LEED

patterns which will be discussed later in this section.

"i-]aeAuger peak-to-peak height of S(151 eV), as scc;_

in this figure, imtially increases linearly with an

increasing number ef S doses. Near the 9th dose the

curve forms a break (slope change of the S Auger
peak height versus S dose curve). The S Auger peak

height is increasing up to the 16th dose of our
measurements where it forms a second break. The

1.50
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Fig, I. Auger peak-to-peak heights of Si(92 eV) and S(151 eV)

versus S doses on clean Si(100)-2x I,
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Fig. 2. Work function change versus sulfur do:;es on Si( 100)-2 × 1

surface.

peak-to-peak height of Si(92 eV) decreases analo-

gously with a break occurring at about 8 doses of S.
Above the 16th dose the S(151 eV) peal.: height

starts to level off, indicating that the sticking of S on

the Si surface becomes negligible. During S deposi-
tion on the Si(100)-2 × 1 surface, the Auger Si(92

eV) peak is shifted with increasing number of S
doses towards the lower energy by 1.5 eV up to the

16th dose of S. n_,'l-,_sis an indication of Si-S ;trong
interaction and will be digcussed further after the

TDS measurements.

Fig. 2 shows the work function (WF) change
versus the S doses on the clean Si(100)-2 × 1 surface

at room temperature. These measurements are also in
correlation with the LEED patterns during sulfur

deposition. The WF increases initially linearly with
increasing S coverage. Above the fourth S dose the

slope of the work function curve becomes smaller.
Near the 9th dose, the work function reaches its

maximum value and subsequently starts to decrease
as the number of sulfur doses increases. Above the

thirteenth dose the decrease of the WF is very small,

despite that the Auger peak height of S(151 eV)
continues to increase (Fig. 1).

Next we will combine the above measurements

with LEED observations. The clean Si(100)-2 ×1

surface shows a good, intense (2 × 1) LEED pattem.

Initial deposition of S on this surface does not

change the (2 × l) structure. Above the fourth dose,

the half-order spots become diffuse and the pattern

changes to a (1 × 1) with its maximum intensity near

the 9th dose. Further S deposition increases the

background, however, the (1 × 1) structure remains.
We believe that S on Si(100)-2 × 1 forms also a

(2 × 1) structure, initially. The maximum intensity of

the (2 × 1) pattern, near the 4th S dose, corresponds

.,._,0.5 ML of S coverage. Above,the 4th_dose.,, ,b_th

the Si substrate and the S adsorbate change to a

(1 × 1) structure. The completion of the (1 × 1), near

the 9th dose, corresponds to 1.0 ML of S, and

coincides with the first break of the Auger curve

(Fig. 1) and the maximum increase of the WF value

(Fig. 2).

The same UHV system has been used previously

with the same S-source, and about the same flux of S

on Ni(100) [23]. The LEED observations showed the

formation of a c(2 × 2) pattern close to the 12th dose

of S on Ni(100). The density of the S overlayer,

which produces the c(2 × 2) on Ni(100) is 8 × 1014

atoms cm -2 at 12 doses. At 9 doses the density
should be about 6 × 10 _'_ atoms cm -2. This is very

close to 6.8 × 10 _' atoms cm -2, which is the density

of 1 ML of S on Si(100). Therefore, the completion
of the S(1 × 1) structure on Si(100) at 9 doses is

indeed about 1 ML of sulfur. It has been proposed

that the initial sticking coefficient of S on clean
Ni(100) is close to unity [?4]. This implies that the

initial sticking coefficient of S on Si(100)-2 × 1 is
also one.

Thermal desorption spectra from S-covcred
Si(100) surfaces did not show any observable peak

of S 2 (64 ainu). Sulfur was mainly desorbed as SiS
compound. Fig. 3 shows a series of SiS (60 ainu) ol

thermal desorption spectra for different amounts of S

deposited on Si(100) surfaces. The heating rate ot
desorption was constant, b = 30 K s --_, for all spec-

tra. There is only a single peak with its maximun"

value near 585°C. The areas under the TD peaks oI

SiS increase linearly with increasing number of S

doses up to 16th dose of S, where, we believe, tha_

the completion of the second S layer occurs. It b

known that the slope of the areas under the TD5

versus doses of a deposited adsorbate on a substrate

is proportional to the sticking coefficient of the
adsorbate. This, implies that the sticking coefficien

of S on Si(100) surfaces is constant up to 2 ML, ant

subsequently becomes substantially smaller. Basec

on this we may assume that the drastic slope change:

near the 9th dose of the Auger curve (Fig. 1) and tht
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._position increases the
× 1) structure remains.

100)-2 x I forms also a

Lemaximum intensity of

4th S dose, corresponds

bo",. th;."4?., de,se, both

adsorbate change to a
._tion of the (1 × 1), near

to 1.0 ML of S, and

ak of the Auger curve
1crease of the WF value

as been used previously
about the same flux of S

observations showed the

rn close to the 12th dose

;ity of the S overlayer,
) on Ni(100) is 8 × 1014

At 9 doses the density

:oms cm -2. This is very

a-2 which is the density

laerefore, the completion

n Si(100) at 9 doses is

ar. It has been proposed
,efficient of S on clean

:4]. This implies that the
A S on Si(100)-2 x 1 is

2_ S/Si(IO0)

13=30K/s

i

500 350 600 650

T (°C)

Fig. 3. Thermal desorption spectra of SiS from S-covered Si(100)

surfaces.

work function decrease (Fig. 2) are consistent with a

submergence of the second S layer into the Si near
the surface.

During heating of the S-covered Si(100) surfaces
the Auger, LEED, and WF measurements follow

their variations during S deposition in reverse.

pectra from S-covered

Low any observable peak

; mainly desorbed as SiS
series of SiS (60 amu) of

'or different amounts of S

Lces. The heating rate of

= 30 K s -_ , for all spec-

4. Discussion

The current experimental LEED observations

show very clearly that deposition of elemental sulfur
on clean Si(100)-2 × 1 surfaces at room temperature

changes the Si (100)-2 × 1 structure to Si(100)-I × 1.

This phase transition, is reported for the first time.

increasing number of S
;, where, we believe, that

cmd S layer occurs. It is
:he areas under the TDS

:1adsorbate on a substrate

icking coefficient of the

at the sticking coefficient

constant up to 2 ML, and

peak with its maximum i We believe that the S adsorbate follows the substrate
as under the TD peaks of structures, i.e. it forms a (2 × I) up to 0.5 ML and a

(1 × 1) above this coverage.
The TDS measurements (Fig. 3) show that S is

desorbed as SiS molecule. This indicates clearly that

the S-Si bond energy is greater than that of Si-Si,

which may indeed be the dominant cause of the
substrate restoration to a Si(100)-I × 1. It is impor-

tant that the S coverage is greater than 0.5 ML in
order to maintain the Si restoration. Our results of S

9stantially smaller. Based adsorption on the Si substrate are in agreement with

t the drastic slope changes' Kaxiras [7], and later with Kruger and Pollman's [6]

ager curve (Fig. 1)and the I theoretical calculations. According to their results

adsorption of S or Se causes the surface restoration
of the reconstructed Si(100)-2 × 1 substrate to its

original bulk-terminated surface. Kaxiras, in his re-

port, considered different structures consisting of

imbedding and mixing of the group-VI adatoms with

Si substrate atom._-_.This .is i,'._ agreement with the

imbedding of the second S layer into the Si bulk.

The author emphasizes, however, that the restored

surfaces are stable against all of the considered
alternative structures.

Besides the theoretical support [6,7] on the
restoration of the semi-conductor surfaces to their

original bulk-terminated geometry achieved by S and

Se adsorbates, there are also several experimental

results mentioned already in the introduction. Espe-

cially, Weser et al. [20] reported that S on Ge(100)-2

X 1 changed the (2 × 1) structure to (1 × 1) and that

the S/Ge(100)-I ×1 system was regarded as an
ideal terminated surface. The same authors, however,

have not observed any ordered S overlayer on the

Si(100)-2 × 1 surface [21]. Recently, Moriarty et al.

[22] reported that room temperature adsorption of S

resulted in the formation of an overlayer on Si(100)-
2 × 1, retaining the (2 × 1) reconstruction. They also

report that annealing of S covered Si(100)-2 × 1 at

325°C leads to the desorption of the sulfur overlayer

As it is already mentioned, the complete removal of

S takes place by heating the substrate to 650°C.

5. Summary

We have used a correlation of LEED, AES, TDS
and work function (WF) measurements in UHV to

study the deposition of elemental sulfur on Si(100)-2

× I surfaces. The adsorption of S at room tempera-
ture causes the gradual change of the reconstructed
Si(100)-I × 1. The S adsorbate follows the substrate

structures, i.e. it forms initially a (2 × 1) up to 0.5

ML and subsequently a (1 × 1) structure. Above 1

ML, Sulfur is imbedded into the Si bulk near the

surface. The sticking coefficient of S on Si(100)

surface is constant, S = 1, up to 2 ML. Deposition of

S at RT up to I ML increases the WF of the surface

by about 30+0.05 eV. Above 1 ML, as the S is
diffused into the Si bulk, the WF decreases. The
TDS measurements show that S is desorbed as Si-S

molecule with a single TD peak near 585°C. This
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may indicate that the Si-S bond energy is greater

than that of Si-Si which may be the dominant cause

of the substrate restoration.
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ABSTRACT

Deposition of elemental S on S i(100)2x 1 surfaces at room temperature changes the

reconstructed Si(100)2x 1 to its original buN-terminated Si(100) 1x 1 surface. Sulfur forms initially

a (2xl) on the Si(100)2xl surface and subsequently a (lxl) on the Si(100)lxl. Above 1MI_,,

sulfur is diffused into the Si bulk near the surface. The sticking coefficient of S on Si(100) surface

is constant up to 2 lVlJ_,.Deposition of S at RT up to 1 ML increases the work function of the

surface by about .3+0.05 eV. Above 1 NIL, as the S is diffused into the Si bulk,the work

function decreases.

,r',

%

INTRODUCTION

Silicon and other semiconductors (GaAs, InP) are widely used in high-speed electronics,

long-wavelength optical circuits (optoelectronics) [1,2] and, mainly in space technology, as solar

cells (photovoltaics) [3]. Their efficiency, however, is reduced by radiation damage [4,5], and

other causes which may change the surface composition. To prevent damage in the surfaces

involved without reducing their efficiency the above semiconductors are pretreated with

protective films. Recently, an interest has arisen with respect to the possibility of pretreating the

surfaces of the above semiconductors with S and S-compounds to protect and stabilize them

against the degradation [4,5].Working on a program related to the growth of protective films on

photovoltaics, we felt that the knowledge of the behavior of S alone on the above

semiconductors and specifically on Si is very important.

In addition to the importance in applications, there is a recent rising scientific interest on the

structural and electronic properties of chalchogen elements (S,Se) on Si(100)2xl surfaces.

Theoretical calculations suggest that chalchogen adsorbates change the structure of the

Si(100)2xl surfaces [6,7]. According to our knowledge, this does not agree with the up to-date

relevant experimental results. It is well-known that the clean Si(100) surface shows a strong (2xl)

reconstruction in the LEED pattern. It has been recently accepted by most researchers that dimers

are the main building blocks of the reconstructed surface of Si(100) [6-14]. The restoration of

reconstructed semiconductor surfaces to their original bulk-terminated surface has been achieved,

lately, by different adsorbates other than S on Si(100) [15-18]. Adsorption of S on clean

Ge(100)2xl changed the (2xl) structure to (lxl). The system S/Ge(lxl) was regarded as an ideal

terminated surface[ 19]. The same authors[20] have, experimentally, investigated the behavior of S

on .Si(100). They have not observed an ordered S adlayer. Moriarty et al. reported, recently, that

room temperature adsorption of sulfur resulted in the formation of an overlayer with the

underlying Si(100) retaining the 2xl reconstruction [21]. They also reported that annealing of the

S/Si(100)2xl surface to 325°C leads to the desorption of the sulfur overlayer and the appearance

of coexisting c(4x4) and (2xl) surface reconstruction. In contrast to this report, theoretical

studies by Ka.,xiras [7], and later by Kruger and Pollman [6], suggested that adsorption of group

VI elements (S or Se) on Si(100)2xl can lead to restoration of the ideal bulk-terminated geometry

on the semiconductor surfaces. From the above discussion it is apparentJy clear that additional

effort on the study of S and Se on Si(100)2xl is necessary.



EXPERIMENT

Theexperimentwasperformedin anultra-highvacuumsystem(UHV) usinganAuger
electronspectrometer(AES), aquadrupolemassspectrometerfor TDS measurements,a low
energyelectrondiffraction (LEED)system,anda Kelvin probefor work function(WF)
measurements.Elementalsulfurwasevaporatedby thermaldissociationof MoS2singlecrystal
flakesmountedona tungstenfilament. TheSi(100)substratewascleanedby At+ bombardment
atE = 1keV for 40min with anion currentof 10t.tA.After bombardmentthesamplewasheated
to 1000ocby passingcurrentthrougha0.05mmTa strip, uniformly pressedbetweenthesample
andaTa foil case.Thesurfaceatomicdensityof 1monolayerof SonSi(100)is consideredequal
to that of theoutermostlayer of Si, NSi = 6.8x1014atoms'cm-2.

RESULTS

Fig. 1showstheAuger peaktopeakheights(Ap-pH) of theS(151eV) versusthe numberof
SdosesdepositedoncleanSi(100)2xl surfacesatroomtemperatureandthesubsequentheating
temperaturesof theSi substratefor 2 minutes.Thesemeasurementsareshownin correlation
with theobservedLEED patternswhichwill bediscussedlater in thissection.As seenin this
figure,theAugerpeakto peakheightof S(151eV),initially increaseslinearlywith anincreasing
numberof S doses.Neartheninthdosethecurveformsabreak(slopechangeof theS Auger
peakheightvs S dosecurve).TheSAugerpeakheightis increasingupto theeighteenthdoseof
ourmeasurementswhereit formsasecondbreak.Above the 18th dosetheS(151eV)peak
heightstartsto leveloff. With thesubsequentheatingtheS peakheightremainsnearlyconstant
up to 400°C. Abovethis temperaturetheSpeakheightdecreasesdrastically,indicatingremoval
of Sfrom thesurface,which iscompletedatabout650oc. During theS depositiontheenergyof
theSi Augerpeakis shiftedlinearlywith S dosesto lower energyby 1.5eV atthe18thdose(not
shownhere).Thisis anAugerchemicalshiftwhichmaybeattributedto astrongbinding,
probablycovalent,betweenS andSi.

Fig. 2 showsthework functionchange(k_) .versus.SdosesoncleanSi(100)2xl surfacesat
roomtemperatureandthesubsequentheatingtemperaturesof theSi substratefor twominutes.
During theS depositionatroomtemperature,thework functionincreasesinitially linearlywith
increasingS coverage.AbovethefourthSdosethework functioncurvedeviatesfrom linearity
and itsslopebecomessmaller.Ne_ theninthdose,thework functionreachesitsmaximum
value,andsubsequentlystartsto decreaseasthenumberof sulfurdosesincreases.Abovethe
thirteenthdosethedecreaseof thework functionis very small,despitethattheAugerpeakheight
of S(151eV) continuesto increase.We shouldemphasizethatduringheatingthework function
decreaseswhile theS Augerpeakheightremainnearlyunchangedup to300°C.Mostlikely,
heatingprovidestheactivationenergyfor furtherdiffusionof S into thebulkof theSi substrate
causingthework functiondecrease.Above400°Cthework functionincreaseswhile theAuger
peakof S decreasesdrastically,indicatingadrasticdesorptionof S from thesurface.At about
550°C, the second S layer is removed completely and the work function increases to its maximum

value. Above 550oc, as the S coverage approaches the 0.5 NIL, the surface changes back to the

reconstructed (2xl). Near 650°C the S is completely desorbed from the Si substrate.

The LEED observations show that the clean Si(100)2xl surface gives a good intense (2xl)

LEED pattern. Above the fourth dose of S deposition on this surface, the half-order spots become

diffuse and the pattern changes to a (lxl) with its maximum intensity near the ninth dose. Further

S deposition increases the backgound, however, the (lxl) structure remains. It appears that
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abovethe4th doseof S theSi(lxl)2xl reconstructedsurfacechangesto aS(100)lxl. We
believethatstructuraltendeficiesof theS adsorbateaccommodatesthechangeson theSi
substrate.Fig. 3 showsa sideview structuralmodelof (a) areconstructedSi(100)2xl surface
(b) a (2xl) structureors (0.5ML) onSi(100)2xl (c) a (lxl) structureof S (1.0ML) on
Si(100)lxl (d) a top(lxl) and adiffused(lxl) underla)er of S (-2.0 ML) onSi(100)Ixl. ( P
standsfor thesurfacedipole moment).We proposein this figure that,SonSi(100)2xl forms
alsoa (2xl) structure,initially. Themaximumintensityof the(2xl) pattern,nearthe4thdose,
shouldcorrespondto 0.5 ML of Scoverage.Abovethe4th dose,boththeSi substrateandtheS
adsorbatechangeto a(lxl) structure.Thecompletionof the(lxl), nearthe9thdose,
correspondsto 1.0ML of S,andcoincideswith thefirst break of theAugercurveandthe
maximumincreaseof thework functionvalue(Figs 1 and2). Abovethe9thdose,the(lxl) is
retained.Despitethat theAugercurveremainslinearup to 9th S dose,thework functioncurve
deviatesfrom linearityat the4thdose.This maybeattributedto differentS sitesbeforeandafter
the4thdose.Assumingthatthebondingof S onSi is covalentup to 2 ML, thepolarizationof
theelectronicchargeof thedepositedSatomsremainsunchangedwith increasingcoverage.
Therefore,anychangein dipolemomentshouldbeattributedto thedipolelengthchange.
Consequently,theS atomson thedimersof theSi(100)2xl surfacemayhavegreaterdipole
momentP than onsiteson theSi(lxl) surfaces(Fig. 3). In the latter case, the distance between

the neighboring Si atoms of the top layer is greater than that between those of the dimers.

Therefore, the S adatoms should be deeper in their sites between the Si atoms of the (lxl)

surface structure, with a smaller dipole length and, therefore, smaller dipole length and work

function.. The fact that, above 1.0 ML (9th dose), the s!ope change of the Auger curve is rather

drastic (Fig. 1), as compared to cases of layer by layer growth [22], and the work function value

decreases may indicate that above 1.0 NIL the sulfur is submerged into the Si bulk near the

surface. The dipole moment of the submerged S atoms compensates that of the S overlayer with

a consequent lowering in work function (Fig. 2). Kaxiras, in his calculations [7], considered

different structures consisting of embedding and mixing of the group-VI adatoms with Si

substrate atoms. This is in agreement with our measurements which indicate an imbedding of the

second S layer into the Si bulk.

(a)

. °

o.

(c)

(b)

P,=P,-P.,

(d)

Figure 3 Side view of (a) a reconstructed Si(100)2x 1 surface (b) a (2x 1) structure of S

(0.5 ML) on Si(100)2xl (c) a (lxl) structure of S (1.0 NIL) on Si(100)lxl (d) a top (lxI)

and a diffused (Ixl) underlayder of S (-2.0 ML) on Si(100)lxl. ( P is dipole moment).



ThesameUHV systemhasbeenusedpreviouslywith thesameS-source,andaboutthesame
flax of S onNi(100) [22]. TheLEED observationsshowedtheformationof ac(2x2)pattern
closeto the 12thdoseof S onNi(100).Thedensityof theS overlayer,whichproducesthe
c(2x2)onNi(100), is 8x1014atoms'cm-2 at 12doses.At 9 dosesthisdensityshouldbeabout
6x1014atoms.cm-2 . This is verycloseto 6.8x1014atoms.cm-2,which is thedensityof 1ML
of S onSi(100).Therefore,at thecompletionof the(lxl) structureonSi(100),thecoverageof
S at 9 dosesis indeedabout1ML. It hasbeenproposedthat the initial stickingcoefficientof S
oncleanNi(100) iscloseto unity [23].This implies that the initial stickingcoefficientof S on
Si(100)2xl is alsoone.Thelinearityof theAugercurve up to 1ML (Fig. l) indicatesthat the
sticking coefficientof S onSi(100)surfaceremainsone,at least,up to 1ML. Theslopeof the
Auger curve,however,is alsoconstantbetweenthefirst andthe secondbreak,whichoccursin
aboutthesametime of thecompletionthef'mstmonolayer.This may furtherimply thatthe
stickingcoefficientof S is nearlyconstantup to the 18thdosewherethesecondlayer of S is
completed.

CONCLUSIONS

The adsorption of S at room temperature causes the gradual change of the reconstructed

Si(100)2xl to its original bulk-terminated Si(100)lxl surface. The S adsorbate accommodates the

substrate" structural changes. Sulfur, at 0.5 ML, forms a (2xl) on the Si(100)2xl surface and

subsequently, at 1.0 ML, a (lxl) on the Si(100)lxl. Above 1 ML, sulfur is imbedded into the Si

bulk near the surface. The sticking coefficient of S on Si(100) surface is constant up to 2 ML.

Deposition of S at RT up to 1 ML increases the work function of the surface by about .3_+0.05

eV. Above 1 ML, as the S is diffused into the Si bulk, the work function decreases.
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ABSTRACT

Adsorption of elemental S at RT causes the transition of the reconstructed

Si(100)2xl surface to its original bulk-terminated Si(100)lxl. The S adsorbate

forms initially a (2xl) structure at 0.5 MLs on the Si(100)2xl surface, a (lxl) at 1

ML on the Si(100)lxl, and above 1 ML sulfur is imbedded into the Si substrate. The

sticking coefficient of S is constant and equal to unity for the first 2 MLs.

Deposition of S at RT up to 1 ML increases the work function by 0.3+_0.05 eV. The S

adsorbate is strongly bound to the Si substrate in a molecular Si-S form. The Si-S

bond energy is greater than that of Si-Si, which may be the driving force of the

Si( 100)2x 1 --> Si(100) 1X1 transition.
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I. INTRODUCTION

The passivation of semiconductor Surfacesis an area of intrinsic scientific

interest and of great technological importance. Silicon and other semiconductors,

such as GaAs and InP, are well-known for their potentially wide use in high-speed

electronics and long-wavelength optical circuits (optoelectronics) t,2. They have

also demonstrated great value, mainly in space technology, as solar cells

(photovoltaics) 3. Their efficiency, however, is reduced by electron 4, X-ray 5 and

gamma 6 radiation damage. Nonradiative recombination of charge carriers 1 is

another such cause. Moreover, interactions with surroundings such as oxidation

may cause a depletion, and generally a change of the surface composition. To

prevent damage in the surfaces involved without reducing their efficiency the above

semiconductors are passivated. This is done by depositing protective films

(dielectric window layers), such as chalcogenides: sulfur, gallium sulfide and indium

sulfide 7-10. Most of the studies concerning surface passivation of semiconductors

were carried out with the use of chemical vapor deposition techniques under

atmospheric pressure. The analysis of the deposited layers with the former

techniques has been obtained ex-situ after the completion of films a few hundred

nm's thick.

The in-situ analysis of the initial stages of the interface formation in ultra-

high vacuum (UHV) is necessary for the understanding and subsequent

improvement of the deposition process. The interface region between the

adsorbate and the substrate is that which primarily controls the growth of the films.

The understanding of the film growth, therefore, requires deposition methods that

allow control of the building process of the structure at the atomic level ll. A

beginning with elemental S deposition on Si(100)2xl in UHV would be appropriate.

The knowledge of the behavior of S alone on Si and other semiconductors is very

important because: (a)mf the interest which has arisen with respect to the

possibility of pretreating the surfaces of the semiconductors with S to protect and

stabilize these surfaces against degradation resulting in improved subsequent



processing 12,13, and (b) it will help to obtain a better understanding of the binding

structure and electronic properties of the growth of chalchogenide protective films

such as GaS and InS.

Besides the importance in applications, there is a recent rising scientific

interest on the structural and electronic properties of chalcogen elements (S,5e) on

Si(100)2xl surfaces. Theoretical calculations suggest that adsorbates change the

structure of the Si(100)2xl surfaces14,15. According to our knowledge, this does

not agree with the up todate relevant experimental results. More specifically, the

Si(100) surface is easily reconstructed with a small amount of heating. The surface

has a structure different from that of the bulk, and the reconstruction of the clean

surface occurs in order to reduce the number of broken dangling bonds 14. In other

words, the reconstruction of the surface drives to minimize the high energy of

broken covalent bonds, which would exist on an ideal bulkterminated plane IS. The

clean Si(100) deal bulk terminated plane 15. The clean Si(100) surface shows a

strong (2xl) reconstruction in the LEED pattern, observed for the first time by

5chlier and Farnsworth in 195916. Several models for the (2xl) reconstruction have

been proposed 17. It has been, recently, accepted by most researchers that dimers

are the main building blocks of the reconstructed surface of 5i(100). The question,

however, of whether the dimers are symmetric or buckled remains unclear, as

reported by Chadi 18. Today, new evidence of asymmetric (buckled) dimers is

supported by most of the experimental 19-23 and theoretical 14,15 investigators who

have worked on this problem. Kruger and Pollman 14 calculated that buckled

dimers are energetically favored over symmetric ones by 0.14 eV per dimer 14.

The restoration of reconstructed semiconductor surfaces to their original bulk-

terminated surface has been achieved, lately, by different adsorbates. Specifically,

ideal (lxl) terminations of (111) surfaces were reported for As on Ge(lll) 24 and

Si(ll 1)25,26 and for C1 omGe(111) 27. Adsorption of 5 on clean Ge(100)2xl changed

the (2xl) structure to (lxl). The system S/Ge(100)lxl was regarded as an ideally

terminated surface 28. The same authors 10 have experimentally investigated the



behavior of S on Si(100). They have not observedan orderedS adlayer. Moriarty

et al.30reported, recently, that room temperature adsorption of sulfur resulted in

the formation of an overlayer with the underlying Si(100) retaining the (2xl)

reconstruction. They also mentioned that annealingof the S/Si(100)2xl surfaceto

325 FC leads to the desorption of the sulfur overlayer and the appearance of

coexisting C(4x4) and (2xl) surface reconstruction. In contrast to this report,

theoretical studies performed by Kaxiras 15,and later by Kruger and Pollman14,

suggestedthat adsorptionof group VI elements(S or Se)on Si(100)2xl can lead to

the restoration of the ideal bulk-terminated geometry on the semiconductor

surfaces. From the abovediscussion it is apparently clear that additional effort on

the study of S and Se on Si(100)2xl is necessary.

Most of the sulfur adsorption studies, up to now have taken place with the

exposure of the substrates to H2S gas. To remove the H 2 from the surface the

substrates were heated to temperatures equal or greater than 200 oC. Hydrogen,

however, cannot be removed selectively. These mixed systems do not show any

well defined long range order 28. For a detailed understanding of the adsorption

kinetics of S on Si surfaces at room and lower temperatures, it is important to

deposit elemental sulfur.

In this work we evaporate elemental sulfur on Si(IO0)2X1 surfaces. We

study the sample using Low Energy Electron Diffraction (LEED), Auger Electron

Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS),and Work Function

(WF) measurements. The data suggest that the presence of sulfur on the surface

causes a phase transition of the substrate. Preliminary results have been reported

in ECOSS and MRS 1995 Fall meetings.

II. EXPERIMENTAL

The experiments v_ere performed in an ultra-high vacuum chamber (p<10 -t°

Ton-), equipped with a cylindrical mirror analyzer (CMA) for AES measurements, a

quadrupole mass spectrometer (QMS) for TDS measurements, a LEED system,



and a Kelvin probe for WF measurements.

Elemental sulfur was evaporated by" thermal dissociation of MoS2 single

crystal flakesmounted on a tungstenfilament. During dissociationof MoS2 the Mo

remained on the tungstenfilament, while S was evaporated. The Si(100) substrate

was cleanedby Ar +bombardment at E=I keV for 40 min with an ion current of 10

mA. After bombardment the sample was heated to 1000oC by passing current

through a 0.05 mm Ta strip, uniformly pressedbetween the sample and a Ta foil

case.The temperature of the samplewas measuredby a Cr-AI thermocouple. The

Si specimenwas consideredsufficiently clean when the Auger peak height ratios

C(272eV)/Si(92eV) and0(512 eV)/Si(92eV) were below 1%. The estimation of the

S coverageson Si(100) surfaceswere basedon a correlation of LEED, AES and

TDS measurements, and the comparison with the measurements of S on the

Ni(100) surface which took place in the same system under the same deposition

conditions 31. The surface atomic density of 1 monolayer of S on Si(100) is

considered equal to that of the outermost layer of Si, Nsi=6.8xl014 atoms-cm -2.

III. RESULTS

Auger and Work Function measurements

Figure l shows the Auger peak to peak heights (Ap-pH) of the S(15 1 eV)

and the work function (A_) change as a function of the number of doses of S

deposited on clean Si(100)2xl surfaces at room temperature. These measurements

are shown in correlation with the observed LEED patterns which will be discussed

later in the next section. As seen in this figure, the Auger peak to peak height of S(

15 1 eV), initially increases linearly with an increasing number of S doses. Near the

ninth dose, the curve forms a break (slope change of the S Auger peak height vs S

dose curve). Also above _he 9th dose the S Auger peak height is increasing linearly

up to the eighteenth dose of our measurements where it forn-ls a second break.

Above the 18th dose the S(151 eV) peak height starts to level off. This Auger peak
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height vs S doses curve is characteristic of a layer by layer growth. During the S

deposition on the clean Si(100)2xl surface at room temperature, the work function

initially increases linearly with increasing S coverage. Above the fourth S dose the

work function curve deviates from linearity and its slope becomes smaller. Near

the ninth dose, the work function reaches its maximum value, and subsequently

starts to decrease as the number of sulfur doses increases. Above the thirteenth

dose the decrease of the work function is very small, despite that the Auger peak

height of 5(15 1 eV) continues to increase. The maximum observed value of the

WF increase was about 0.3 eV. The above WF measurements were repeated three

times, and the maximum WF value varied by +0.05 eV. Fig. 2 shows the energy

shift of the integrated Auger Si(92 eV) peak during S deposition on clean

Si(100)2xl. The insert shows the Si(92 eV) energy shift versus S doses. According

to the insert, this shift increases linearly with increasing S doses to its final value of

1.5 eV at the completion of the second layer of S. During heating and as the S is

removed from the surface the shift decreases and the energy of the Si peak goes

back to that of the clean Si surface. This is an Auger chemical shift which may be

attributed to a strong S-Si interaction. Most likely, the S adatoms form a

compound with the Si substrate. The fact that the shift increases linearly may

indicate that the nature of binding is the same up to the completion of the second

layer, in agreement with the following TDS measurements.

TDS measurements

Thermal desorption spectra from S-covered Si(100) surfaces have shown

hardly observable peaks of S2 (amu 64). Sulfur was mainly desorbed as a SiS

compound. Fig. 3 shows a series of SiS (ainu 60) of thermal desorption spectra for

different amounts of St deposited on S(100) surfaces. The heating rate of

desorption was constant, b =20 K/s, for all spectra. There is only a single peak with

its maximum value near 585 °K, the very small peaks of S2, not shown here, appear
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at the same temperature and probably are due to a partial dissociation of the SiS

molecule. This finding does not agree with Moriarty et al. 3o, who reported that the

annealing of the S covered Si(100)2xl surface to 325 oC leads to the desorption of

the sulfur overlayer. The latter disagreement will be also discussed in correlation

with other findings in the discussion. The fact that the TD peaks of SiS remain

relatively sharp at the same temperature with increasing S coverage indicates that

the nature of Si-S binding remains the same up to the completion of the S coverage

corresponding to the completion of 2 MLs, in agreement with the chemical shift

measurements.

Fig.4 shows the areas under the TD peaks of SiS (Fig. 3) versus the S doses

on Si(100) surfaces. Note that the S doses in the TDS were 15% greater than those

in the previous(AES and WF) measurements, and the completion of 2 ML's of S in

Fig. 4 occurs at the 1 5th dose. It is obvious, from this figure, that the TDS areas

increase linearly with increasing number of S doses, with a break (slope change of

the SiS TDS areas versus S doses curve) occurring near the 15th dose of 5, this is

where we believe that the completion of 2 ML's of sulfur takes place. It is known

that the slope of the areas under the TDS versus doses of a deposited adsorbate on

a substrate is proportional to the sticking coefficient of the adsorbate. This, in

correlation with Fig. 4, implies that the sticking coefficient of S on Si(100) surfaces

remains constant up to 2 MLs and subsequently becomes substantially smaller.

LEED measurements

The LEED observations show that the clean Si(100)2xl surface gives a good

intense (2xl) LEED pattern. Above the fourth dose of S deposition on this surface,

the half-order spots become diffused and the pattern changes to a (lxl) with its

maximum intensity near the ninth dose. Further S deposition increases the

background, however, the (lxl) structure remains. It appears that above the 4th

dose of S the Si(100)2xl reconstructed surface begins to change to a S(100)lxl. We
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believe that S adsorption on Si(100)2xl forms also a (2xl) structure, initially. The

(2xl) pattern, near the 4th dose, should Correspond to 0.5 ML of S coverage.

Above the 4th dose, both the Si substrate and the S adsorbate change to a (lxl)

structure. The completion of the (lxl), near the the dose, corresponds to 1.0 ML

of S, and coincides with the first break of the Auger curve and the maximum

increase of the work function value (Fig. 1). Above the 9th S dose, the (lxl) is

retained.

The same UHV system has been used previously with the same Z-source,

and about the same flux of S on Ni(100) 31 The LEED observations showed the

formation of a c(2x2) pattern close to the 12th dose of S on Ni(100). The density of

the S overlayer, which produces the c(2x2) on Ni(100), is 8 x 1014 atoms.cm -2 at 12

doses. At 9 doses this density should be about 6 x 1014 atoms.cm -2 . This is very

close to 6.8 x 1014 atoms.cm -2, which is the density of 1 ML of S on Si(100).

Therefore, at the completion of the (lxl) structure on Si(100), the coverage of S at

9 doses is indeed about 1 ML. It has been proposed that the initial sticking

coefficient of S on clean Ni(100) is close to unity32. This implies that the initial

sticking coefficient of S on Si(100)2xl is also one. The linearity of the Auger curve

up to 1 ML (Fig. 1 ) indicates that the sticking coefficient of S on Si(100) surface

remains one, at least, up to 1 ML. The slope of the Auger curve is also constant

for the second monolayer, between the first and the second break, which occurs in

about the same time of completion as that of the first monolayer. This may

further imply that the sticking coefficient of S is nearly constant during the

adsorption of the second S layer, between the 9th and 18th doses. Moreover, the

TDS measurements (Fig. 4) indicate clearly that the sticking coefficient remains

constant and, therefore, equal to unity up to the completion of 2 MLs of S

coverage.

Despite that the ._uger curve remains linear and the sticking coefficient

remains constant up to 9th S dose, the work function curve deviates from linearity

at the 4th dose. This may be attributed to different sites of S atoms on Si before
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and after the 4th dose. Both the chemical shift (Fig. 2) and the TDS (Fig. 4).

measurementsindicate that the nature of binding of S atoms on Si remains the

sameup to 2 MLs of S,which may imply that the chargetransfer (polarization) for

each5 adatom remainsalso the same. Therefore, any change to the surface dipole

moment should be attributed to the dipole length change. Consequently, the sulfur

atoms residing on the dimers of the 5i(100)2xl surface may have greater dipole

moment (dipole length) than on sites between Si atoms of the Si(lxl) surface. In

the latter case, the distance between the neighboring Si atoms of the top layer is

greater than that between those of the dimers of the reconstructed surface.

Therefore, the S adatoms should be deeper in their sites between the Si atoms of

the (lxl) surface structure, with a smaller dipole length, therefore, smaller dipole

moment and consequently a smaller work function than that for S atoms on the

dirners. This will be explained in more details in the discussion. The fact that,

above 1.0 ML (9th dose), the work function value decreases, while the sticking

coefficient and the nature of binding of S on Si remain constant, may indicate that

above 1.0 ML the sulfur is submerged into the Si bulk near the surface. Since the

WF lowering almost stops before the S coverage completion of 2 MLs means that

only part of the second layer is initially diffused into the bulk of Si at room

temperature.

Heating of S-covered Si(100)2xl surfaces

Fig. 5 shows the variation of the Auger peak to peak height (Ap-pH) of

S(151 eV) and the work function change (_X_), in correlation with the LEED

patterns, during the heating of the S-covered Si(100)2xl substrate. The heating was

implied in 50 °C increments for two minutes each. We should emphasize that the

work function decreases _ the early stages of the heating treatment and reaches its

minimum value at 300 oC, while the Auger peak height remains nearly unchanged

up to 400 oC i.e., at which the S is not yet removed from the surface. Most likely,
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heating provides the activation energy for diffusion of more S atoms into the bulk

of the Si substrate causing a further work function decrease. Above 400 oC, the

work function increases while the Auger peak of S decreases drastically, indicating a

drastic desorption of S from the surface. At about 550 °C, the second S layer is

removed completely and the work function increases to its maximum value of 1

ML. Above 550 oC the WF decreases again and as the S coverage approaches the

0.5 ML, the surface changes back to the reconstructed (2xl). Near

650 oC the S is completely desorbed from the Si substrate.

IV DISCUSSION

As we have mentioned previously, the current experimental LEED

observations show very clearly that deposition of elemental sulfur on clean

Si(100)2xl surfaces, at room temperature, changes the Si(100)2xl reconstructed

surface to a Si(100)lxl. This phase transition, is reported for the first time. We

believe that the S adatoms initially reside on the dimers forming a (2xl) at 0.5 ML

and a (lxl) above this coverage. In fig. 6 we propose a surface structural model of

sulfur on Si(100) surfaces. Fig. 6a shows a schematic side-view of the top three

layers of the clean reconstructed Si(100)2xl surface with the dangling bonds. The

deposited S atoms originally reside on bridge sites. Each S atom is specifically

bound through the dangling bonds on the two Si atoms of the dimer (fig. 6b), which

is consistent with the fact that S is divalent. The maximum coverage of this state is

0.5 ML at which all the climer sites are filled, and the S adatoms form a (2xl)

structure retaining the reconstruction of the Si substrate. This (2xl) structure of

the S overlayer on the Si(100)2xl surface has been named the hemisulfide state. As

the S deposition on the Si substrate continues above 0.5 MLs, the S atoms which

reside on available bridge sites between dimers cause the bonds between the Si

atoms of the dimers to Break, thus providing bonding for the S adatoms. As a

result of this process, the Si atoms are gradually displaced, causing the restoration

of the reconstructed Si(100)2xl to a Si(100)lxl surface. The sulfur aclatoms remain
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on the bridge sites, and are bound to neighboring Si atoms as it is shown in fig. 6c.

Thus, above 0.5 ME, S gradually forms a S(lxl) structure causing the change of the

Si substrate to an ideal bulk-terminated plane. This S(lxl) structure on Si(100)lxl

has been named the monosulfide state with a maximum coverage of 1 ME. Above

1 ME, S continues to be adsorbed with the same sticking coefficient up to the

coverage of 2 ML. Most of the 2nd monolayer of S is initially diffused into the bulk

of Si and later the diffusion decreases and Sremalns on the surface. The heating of

300 oC provides activation energy for further diffusion with a simultaneous

decrease of the WF. Fig. 6d shows a possible binding of the embedded S atoms

which we call disulfide state. Fig. 7 shows a top view of: (a) a clean Si(100)2xl

surface, Co) the hemisulfide on Si(100)2xl, (c) the monosulfide on Si(100)lxl and (d)

the disulfide on Si(100)lxl.

The break of the bond between the Si atoms of the dimers and the

subsequent rearrangement to a (lxl) structure is consistent with a strong Si-S

interaction. This strong interaction is suggested by the chemical shift of the Auger

Si(92 eV) peak during S deposition (fig. 2) and the TDS measurements (fig. 3). the

latter measurements show that the S is desorbed as a SiS molecule, indicating

clearly that the Si-S bond energy is greater than that of Si-Si, which may indeed be

the dominant cause of the substrate restoration to a Si(100)lxl. The greater S-Si

bond energy than that of Si-Si substrate has been reported some time ago 33. The

heating results (fig. 5) indicate that, as soon as part of the S is desorbed from the

surface and the coverage is < 0.5 ML the reconstructed (2xl) comes back again.

Our model of S adsorption on the Si substrate is in agreement with Kaxiras'15, and

later with Kruger and Pollman's 16 theoretical calculations. According to their

results adsorption of S or Se causes the surface restoration of the reconstructed

Si(100)2xl substrate to its original bulk terminated surface. Kaxiras, in his report,

considered different strucl-ures consisting of embedding and mixing of the group-VI

adatoms with Si substrate atoms. He emphasizes, however, that the restored

surfaces are stable against all of the considered alternative structures. This in
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agreement with our measurements which indicate an imbedding of the second S

layer into the Si bulk.

Next, we'll try to justify the WF variations in correlation with the

corresponding adsorption sites of S on the Si substrate. As it is explained in the

section "results", the surface dipole moment changes are mainly due to those of the

dipole length which are dictated by site changes of the S on the Si substrate.

However, the WF changes are proportional to the dipole moment (eq.1).

From the inRial slope of the WF curve (fig. I) the initial dipole moment of S

may be calculated by the Hemholtz equation:

Po = (1/2r0(AcP/AN)N->0 = 1/2re 300- 10-18(A¢/AN)N_>0 Debye (1)

7 . "

!/?_

where the sulfur atomic density N= O s. 6.8-1014 atoms.cm -2, and ®s is the coverage

of S in monolayers. The initial dipole moment of S was found to be po = 0.4 Db

(Debye). If it is considered that in the hemisulfide state the S atoms reside on the

dimers as in fig. 6a and 8a, and that po = qd or q= Po/d, where q is the charge of

each S adatoms and d= 1.87 A, it is found that q= 0.04e (where e is the charge of an

electron). This indicates that the charge of the S overlayer is very small to consider

the bonds of S on the Si substrate as ionic. Most likely, the S-Si bond is covalent, in

agreement with the chemical shift (fig. 2) and the TDS measurements (fig. 3). After

the restoration, the distance between the S overlayer and the topmost layer of the

Si substrate decreases and becomes d= 1.09 A (fig. 8b). Considering this dipole

length and the finding that q= 0.04e, it is found that po = qd= 0.2 Db. Therefore, the

value of Po is smaller in the monosulfide state than in the hemisulfide. This is

consistent with the decrease in slope and deviation from linearity of the WF curve

above 0.5 ML of S (4th dose) on Si(100) (fig. I), when the reconstructed (2xl) Si

surface startes to change lo its' (lxl).

During the binding of S to the dimers of the Si substrate, we cannot preclude

a decrease of the Si substrate WF due to a transition of the asymmetric dimers to
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their symmetric arrangement. It has already been mentioned in the introduction

the existing view that the dimers of the Si(100) are buckled. This asymmetric

deformation increases the dipole moment of the dimers, and the WF is greater

than that of the substrate with unbuckled (symmetric) dimers 1 8, 34 The existence

of the asymmetric dimers is supported experimentally by ion scattering 19, 20 and

LEED experiments 21. Recent STM 22, 23 measurements and theoretical calculations

14, 15 make the view of asymmetric dimers even stronger. From our

measurements it is not clear that the dimers remain asymmetric in the hemisulfide

state or that during S deposition the asymmetric dimers change to symmetric. In

the latter case, the increase of the work function during S deposition in the

hemisulfide state would be compensated to some degree by the WF lowering

during the transition of the asymmetric dimers to their symmetric state. The

increase of the WF in the hemisulfide state ,however, was very close to 0.25 eV

measured (in the same UHV system) for 0.5 ML of S on Ni(lO0) 31 surface, which

may indicate that the increase in WF up to 0.5 ML was due to the adsorption of S

alone and not to any structural change of the dimers.

Besides the theoretical support 14, 15 on the restoration of the

semiconductor surfaces to their original bulk-terminated geometry achieved by S

and Se adsorbates, there are also several experimental results mentioned in the

introduction. These results, however, refer to As on Ge(lll) 24 and on Si(ll 1)25,

26, and to C1 on Ge(lll) 27 Weser et al 28 reported that S on Ge(100)2xl changed

the (2xl) structure to (lxl) and that the S/Ge(100)lxl system was regarded as an

ideal terminated surface. The same authors, however, have not observed any S

overlayer on the Si(100)2xl surface 29. Recently, Moriarty et al 30 reported that

room temperature adsorption of S resulted in the formation of an overlayer on

Si(100)2xl, retaining the (2xl) reconstruction. They also report that annealing of S

covered Si(100)2xl at 325 FC leads to the desorption of the sulfur overlayer. As it

is already mentioned, the complete removal of S takes place by heating the

substrate to 650 FC. The same authors, in continuing their investigation,
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discovered coexisting c(4x4) and (2x l) surface reconstructions after the desorption

of S at 325 FC. Our finding that S is desorbed as SiS molecule show that heating

causes depletion of Si from the surface. Annealing at relatively low temperatures

would cause a partial removal of Si from the surface which could change the

reconstruction from (2xl) to a c(4x4). Although our structural models are

consistent with the experimental results, we cannot rule out completely the

possibility that, from the beginning of deposition, S forms 2D-islands of (lxl).

Above a certain coverage, the islands coalesce leading to a uniform (ix1) structure

at 1 ML. More work is needed to be done.

V. CONCLUSION

The adsorption of elemental S at room temperature causes the change of

the reconstructed Si(00)2xl substrate to its original bulk-terminated Si(100)lxl

surface. The S adsorbate forms initially a (2xl) stucture at 0.5 ML on the

Si(100)2xl substrate and subsequently a (lxl) on the Si(100)lxl. Above 1 ML,

sulfur is imbedded into the Si bulk near the surface. The sticking coefficient of S on

Si(100)2xl surface is constant and equal to unity for the first 2 MLs. Deposition of

S at RT up to 1 ML increases the work function of the surface by about 0.3+0.05 eV.

Above 1 ML, as the sulfur is diffused into the Si bulk, the work function decreases.

Surface dipole moment estimations based on the work function measurements

suggest that the Si-S bond is covalent. The deposition of S causes a chemical shift

of the Si(92 eV) peak of 1.5 eV, indicating a strong S-Si interaction. While the TDS

measurements show that S is mainly desorbed in the form of SiS compound. This

result supports the argument that the Si-S bond energy is greater than that of Si-Si,

which may be the driving force of the Si(100)2xl --> Si(100)lxl transition.
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FIGURE CAPTION

Figure 1. Auger peak to peak heights (Ap-pH) of the 5(151 eV) and the work

function (A,) change as function of the number of doses of S

depositedon clean 5i(100)2xl surfacesat room temperature

Figure 2. Energy shift of the integrated Auger Si(92 eV) peak during S

depositionon cleanSi(100)2xl. The insert showsthe Si chemicalshift

versusS doses.

Figure 3.

Figure4.

Thermal desorption spectra of SiSfrom S-coveredSi(100)surfaces.

Areas under the thermal desorption peaks of SiS (Fig. 3) and S2

versusS doseson Si(100)surfaces.

Figure5. Variation of the Auger peak to peak height (Ap-pH) of 5(151 eV)

and the work function change (A_) during the heating of the S-

covered Si(100)2x 1 surfaces.

Figure 6. Side-view schematics of (a) the top three layers of clean

reconstructed Si(100)2xl surface with the dangling bonds, (b) the S-

(2xl) (hemisulfide) structure on the 5i(100)2xl surface, (c) the S-

(lxl) (monosulfide) structure on Si(100)lxl surface, and (d) the

diffused second S layer into the bulk of Si(100)lxl.

Figure 7.

Figure 8.

Top-view schematics of (a) the top three layers of the clean

reconstructed Si(100)2xl surface, (b) the S-(2xl) structure on the

Si(100)2xl surface (c) the S-(IxI) structure on Si(100)lxl surface and

(d) the diIfutsed second S layer into the bulk of Si(100)lxl.

Location of the S atoms (a) on the Si(100)2xl surface, (b) on the

Si(100)lxl surface.
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Adsorption of Cs on S - covered Si(lO0) surfaces
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Abstract

This paper describes the adsorption of Cs on clean Si(100)2xl, on 0.5 MLs of

S- covered Si(100)2xl, and on 1 ML of S-covered Si(100)Ixl surfaces at RT. This is

based on our recent report that adsorption of elemental sulfur above 0.5 MLs on clean

Si(100)2xl causes the change of the reconstructed Si(100)2xl to a Si(100)lxl surface.

The investigation takes place in ultra high vacuum (UHV) system with Auger electron

spectroscopy (AES) and work function (WF) measurements. The saturation coverage of

Cs on clean Si(100)2xl surface at RT is 1ML. The presence ofpredeposited S on the

Si(100)2xl surface increases the binding energy and the maximum amount of Cs that can

be deposited on the Si(100) surface at RT. Adsorption of Cs on clean Si(100)2xl gives

the characteristic work function curve of alkali on metals and most semiconductors, i.e. an

initial minimum and subsequent increase towards the value of metallic Cs. Preadsorption

of S on Si(100)2xl further lowers the WF during subsequent Cs deposition by about 4 eV

to a plateau without the final increase which characteristic of the overlayer's metalization.

This is consistent with a covalent bonding of S with the Si substrate. The stable minimum

WF value of Cs on the S-covered Si(100)lxl surfaces might be very interesting for low

work function devices (cathods, energy converters).

Keywords: Auger electron spectroscopy; Work function measurements; Silicon; Cesium;

Sulfur.

I. Introduction

The adsorption of alkali on semiconducting substrates is an area of scientific

interest and great technological importance. Alkali-semiconductor interfaces are also very

important for understanding interracial metallization and Schottky barrier formation [ 1 ].

Special effort has been given to alkali adsorption on Si(100) surfaces. It has been

proposed first by Levin [2 ] and then later by others [ 1, 3- 6] that alkali, and specifically

Cs adatoms forming one-dimensional chains, reside on the raised sites of dimers of clean

Si(100)2xl [ 1,3 - 6 ]. Spiess et al. [ 7 ] support the one-dimensional chain for Na on

Si(100)2xl, but they consider Na atoms only to be adsorbed on the cave sites. Recently, a

double-layer model has been proposed by Abukawa and Kono [ 8 ], where the alkali



(cavesiteor valleybridgesite),andprovidea saturationcoverageof of onemonolayer,®
= 1.Thesurfaceatomicdensityof 1monolayerof CsonSi(100)2xl isconsideredequalto
thatof theoutermostlayerof Si,Nsi = 6.8xl 0TMatoms, cm-L The adsorptio of alkali on

most metallic and semiconducting surfaces causes a decrease in work function which

is interest in the making of thermionic energy converters [ 9 - 11 ]. The coadsorption of

the electropositive alkali and elect®negative elements, such as oxygen, decreases further

the work function of the surface and thus increasing the effciency of the thermionic

emission of electrons. The sulfure is also an electronegative element and we thought that

coadsorption of Cs ane S2 on Si(100)2xl would be interesting. This thought is favored by

the recent important finding when elemental sulfur was deposited on clean the Si(100)2xl

surface [ 12]. Briefly, adsorption of elemental S at RT causes the transition of the

reconstructed Si(100)2xl surface to its original bulk-terminated Si(100)lxl. This

transition takes place when ®s > 0.5 MLs. Above 1 ML sulfur is imbedded into the Si

crystal. The S adsorbate is strongly bound to the Si substrate in a molecular Si-S form.

We believe that Cs on a Si (100)2xl surfaces passivated with S, may help the growth of

Cs films greater than the single layer and reduce the work function of Cs on Si(100)2xl
further.

It is possible to control growth at the atomic level in certain systems with the proper

choice of components and processing methods. The restoration of semiconductor surfaces

to their original bulk-terminated surface has been achieved for different adsorbates.

Specifically, ideal (lxI) terminations of(111) surface were reported for As on Si(l 11)

[ 13, 14 ]. Moreover, a monolayer of As was used to successfully control the growth of the

Ge overlayer on Si substrates [ 15]. When Ge is deposited on clean Si(100) it grows

epitaxially for three monolayers, but then reverts to island growth. This is due to the

lattice mismatch and the balance of surface and interface energies. A monolayer of As

passivates the Si(100) surface. Arsenic keeps floating on top of the Ge during growth,

allowing the pseudomorphic growth of considerably thicker Ge films, up to at least fifteen

monolayers (15 MLs). More recently, group III atoms were used as surfactants during the

growth of Ge on Si(111) [16]. The surfactants produce large changes in the surface

energy of the Si surfaces.

In this work the adsorption of Cs on S-covered Si(100)2xl surfaces is investigated. The

properties of the above surface system has been studied using Auger electron

spectroscopy (AES) and work function (WF) measurements. The kinetics and the mutual

effects of Cs and S during their coadsorption on Si(100)2xl have been discussed and are

reported for the first time.

II. Experimental

The experiments were performed in an ultra-high vacuum (UHV) chamber (p < 10-1°

torr), equipped with a cylindrical mirror analyzer (CMA) for AES measurements and a

Kelvin probe for WF measurements, the Si(100) substrate was cleaned by Ar+
bombardment at E = 1 keV for 40 min with an ion current of 10 mA. After bombardment

the sample was heated to 1000 oC by passing current through a 0.05 mm Ta strip,



uniformlypressedbetweenthesampleandaTa foil case. The specimen temperature T s

was measured with a chromel-alumel thermocouple, spot welded onto the sample holder.

Elemental sulfur was deposited by thermal dissociation of MoS 2 single crystal flakes

mounted on a tungsten filament. During dissociation ofMoS 2 the Mo remained on the

tungsten filament while S was evaporated. The pressure was kept on the order of 10-_°

torr as the S was deposited on the surface. The Cs deposition was done using a

conventional alkali Getter source. The estimation of the S coverages on Si(100) surfaces

were based on the reported results [ 12] in correlation with our AES and work function (

WF ) measurements.

III. Results-Discussion

Auger measurements

As it is mentioned in the introduction, during deposition of S up to 0.5 MLs the

recostructed S(100)2xl surface is remained , whereas, with increasing S coverage

above 0.5 ML the surface changes to a S(100)lxl [12]. Based on this information we

measure the Auger peak to peak hight of Cs( 47 eV ) versus Cs deposition doses on 0.5

MLs of S- covered Si(100)2xl and on 1 ML of S- covered Si(100)txl, as compared to

that of Cs on clean Si(100)2xl, shown in Fig. 1.The Auger peak to peak height (Ap-pH)

of Cs, at first, increases linearly up to the third dose of Cs. Between the third and fourth

dose the slope of the Ap-pH vs Cs dose-curve decreases substantially. The new slope is

nearly constant up to the ninth dose, where the Auger curve levels off, and the Cs

coverage is saturated. We believe that at ninth dose the Cs saturates with a coverage of 1

ML ( which has a density equal to the outermost layer of Si substrate ). The break near

the fourth dose is attributed to different sites occupied by the Cs atoms before and after

the break. Specifically, the Cs atoms are initially adsorbed on the dimer sites. After the

completion of these sites, at fourth dose, the Cs atoms reside on the trough sites between

the dimer rows. This is consistent with the double-layer model proposed by Abukawa and

Kono (8). When Cs is deposited on S-covered Si surfaces, the Cs Auger peak heighr

continues to increas up to our last measuremert, in contrast to that on clean Si surface

which levels offnear the completion of the first monolayer..A comparison of the Auger

curves of Cs on S-covered Si(100) surfaces with that of Cs on clean Si(100)2xl suggests

that (a) the initial slope of the curve is the same in all cases independent of the presence

and amount of the predeposited sulfur. This implies that the initial sticking coefficient of

Cs on the Si(100)2xl does not change in the presence of S on the surface and (b) the

presence of predeposited sulfur on the Si(100)2x 1 surface increases the maximum amount

of the subsequently deposited Cs at RT above 1 ML, indepentently if the surface is
reconstructed or not..

Fig. 2 shows the Auger peak to peak height of Cs(47 eV) during heating

temperature of Cs on the S-covered surfaces of Si(100) as compared to that of Cs on

clean Si(100)2xl surfaces. Cs is desorbed from the S-covered Si(100) in two steps: The

first step occurs for values under 400 °C, and the second step for values over 400 oC. The

Auger peak to peak height ofCs(47 eV) at 400 oC is close to that of a saturated Cs layer



oncleanSi(100)2xl.This indicatesthattheCswhich isdesorbedbefore400oCisbound
to thesecondlayer.Thefirst Cslayer,i.e.theonedirectlyboundto thesubstrate,is
desorbedin the400-700oCtemperaturerange.Thereisa delayin thedesorptionof the
Csmonolayerfrom theS-coveredSi(100)surfaceascomparedto Csdesorptionfrom the
cleanSi(100)2xl surface.Thisindicatesthat thepresenceof Son thesurfaceincreasesthe
bindingenergyof Csonthesurfaceof Si.Probablythis is thereasonof increasingamount
of Csin thepresenceof Son theSi(100)2xl surface.

Work Function Measurements

Figure 3 shows the work function change during Cs deposition (measured in doses)

on clean Si(100)2xl, on 0.5 MLs of S-covered Si(100)2xl and on 1 ML of S-covered

Si(100) I x 1 surfaces. Deposition of Cs on clean Si(100)2x 1 initially decreases the WF to a

minimum value O,a _ and subsequently increases again to a final maximum value, _. In

the presence of the predeposited 0.5 MLs of S on Si(100)2xl, the WF minimum is even

lower than that for Cs on clean Si(100)2xl, (Aq_- 4.0 eV). The final WF increase is also

smaller than that of Cs on clean Si(100)2xl. The initial decrease of the WF to Fmin during

Cs deposition on the 1 ML of S-covered Si(100)lxl is similar to that on 0.5 MLs orS. In

the latter case, however, the Fmin value is maintained with the increasing amount of

deposited Cs. In other words, during Cs deposition on the 1 ML of S-covered restored

surface of Si(100)lxl, the WF decreases with Cs deposition, to a final plateau at the

minimum value.

Figure 4 shows the work function change during heating temperature of Cs deposited

on 0.5 MLs S-covered Si(100)2xl, and of Cs deposited on S-covered Si(100)lxl

surfaces as compare to that of Cs-covered clean Si(100)2xl. The WF variation during

heating is reversible, returning to the value it had during the deposition of Cs on the above

surfaces at room temperature. The work function of clean S i(100)2xl is reached at 700 oC

when both Cs and S are completely removed. The information on the desorption of Cs

from clean and S-covered surfaces of Si(100) is not substantially different compared to

that of the Auger measurements (Fig. 2 )

During Cs deposition on clean Si(100)2xl the work function curve (Fig. 3) has the

characteristic shape of the work function curves during Cs deposition on metals [ 17-20]

and semiconductors [21]. These curves have an initial WF minimum q_mi_, and

subsequently the WF increases with the tendency to reach the WF value of the metallic

cesium (-2.1 eV) [19]. During the deposition of Cs on S-covered Si(100) surfaces both

the q)mi_ and the final maximum, _ma._, decrease. When Cs is deposited on S(1 ML)-

covered Si(100)2xl the WF decreases to a minimum (A_- 4 eV) value where the curve

forms a plateau. Other semiconductors including some metal oxides also do not show the

final WF increase [22-24]. The reported explanation is that in these eases the Cs overlayer

is not in a metallic state, but probably in a covalent or ionic state [24]. Very similar are the

reported results of Cs on oxygenated Ni(100) [25]. As the amount of the preadsorbed

oxygen on the Ni(100) was increased, the final value of the WF was decreasing and when

the Ni surface was oxidized the work function curve did not show the final increase,

instead it exhibited a final plateau. This method was used to probe the oxide formation. In



thepresentcase,the predeposited sulfur interacts strongly with the Si substrate, forming a

Si-S complex analogous to NiO. The Cs overlayer On S(1 ML)-covered Si(100)lxl

surface is not metallic. It, more than likely, forms a covalent bond with the substrate. The

final plateau at the work function minimum (< 1 eV) was stable and probably appropriate

for low work function devices ( cathodes, thermionic energy conversion).

IV. Conclusion

In this work we describe the adsorption of Cs on clean reconstructed Si(100)2x l,

on 0.5 MLs of S- covered Si(I00)2xl, and on 1 ML of S- covered Si(100)lxl surfaces at

room temperature. The investigation takes place in ultra high vacuum (UHV) system with

Auger electron spectroscopy (AES) and work function (WF) measurements. Adsorption

of elemental sulfur above 0.5 MLs on clean Si(100)2x 1 causus the restoration of the

reconstructed Si(100)2xl to Si(100)lxlsurface (12). The saturation coverage of Cs on

clean Si(100)2xl surface at RT is 1ML. The presence of S on the Si(100)2xl surface

increases the binding energy and the maximum amount of the subseqently adsorbed Cs

that can be deposited on the Si(100) surface at RT. Adsorption ofes on clean Si(100)2xl

gives the characteristic work function curve of alkali on metals and most semiconductors,

i.e. an initial minimum and subsequent increase towards the value of metallic Cs.

Preadsorption of S on Si(100)2xl further lowers the WF during subsequent Cs deposition

by about 4 eV to a plateau without the final increase which,for alkali overlayers

characteristic ofmetallization. This is consistent with a covalent bonding of S with the Si

substrate. The stable minimum WF value ofes on the S/Si(100) surfaces might be very

interesting for low work function devices (cathodes, energy converters).
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Figure caption

Figure 1. Auger peak to peak height ofCs(47 eV) on clean Si(100)2xl, on 0.5 MLs of S-

covered Si(100)2xl and on 1 ML of S- covered Si(100)lxl versus Cs

deposition doses.

Figure 2. Auger peak to peak height of Cs(47eV) versus temperature during the heating

ofes on clean Si(100)2xl, on 0.5 MLs of S- covered Si(100)2xl, and on 1

ML of S- covered Si(100)lxl.

Figure 3. Work function change during Cs deposition (measured in doses) on clean

Si(100)2xl, on 0.5 MLs of S-covered Si(100)2xl and 1 ML of S-covered

Si(100)lxl surfaces.

Figure 4. Work function change versus temperature during heating of Cs on clean

Si(100)2xl, on 0.5 ML of S-covered Si(100)2xl, and on 1 ML of S-covered

Si(100)lxl.
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Abstract

In this work we study the adsorption of Cs on (a) Clean Si(100)2xl (b) 0.5 MLs of S-covered S(100)2xl
and (c) 1 ML of S-covered S(100)1xl in ultra high vacuum (UHV). LEED and AES mesurements suggest
that the array of a Cs monolayer clean and S-covered S(100)2xl surfaces was that of the Double Layer model,
according to which, half of the Cs atoms reside on the raised sites of the dimers and the other half in the
trouphs. However, Cs on 1 ML of S-covered S(100)1xl forms initially a coplanar monolayer with the Cs atoms
residing only on one kind of sites. The presence of S on the Si surfaces inceases the subsequently deposited,
at RT, coverage of Cs to more than one monolayer. Structural models of Cs on clean and S-covered Si(100)
surfaces are proposed.

L INTRODUCTION

The coadsorption of the electropositive alkali metals and electronegative elements on

metallic and semiconductig substrates has been intensively studied in the past . Besides the

theoretical interest on the coadsorption species, these systems have many considerable

technological applications such as thermionic energ3, converters, microelectronics and

photocathodes _-3 The sulfure is also an electronegative element and we thought that

coadsorption of Cs ane $2 on Si(100)2xl would be interesting.This thought is favored by our

recent important finding when elemental sulfur was deposited on clean the Si(100)2xl surface

4. Briefly, adsorption of elemental S at RT causes the transition of the reconstructed

Si(100)2xl surface to its original bulk-terminated Si(100)lxl. This transition takes place

when the S coverage is > 0.5 MLs. Above 1 NIL sulfur is imbedded into the Si crystal. The S

adsorbate is strongly bound to the Si substrate in a molecular Si-S form.Similar restorations of

recontructed (111) surface to its original bulk-terminated (lxl) surface were reported for As

on Si(l 11) 5,6 Moreover, a monolayer of As was used to successfully control the growth of the

Ge overlayer on Si substrates 7.We believe that deposition of Cs on a Si (100)2xl surfaces

passivated with S, may help the growth of Cs films greater than the single layer and reduce the

work function of Cs on Si(100)2xl further. It is also interesting to study the electronic and

structural properties of Cs overlayer on the (2xl) reconstructed and the ideal (lxl) surfaces of

Si(100). There are different views pertaining to the nature of the bonding and the metallic

character of the alkali adsorbate on Si(100)surfces 8-t_. Structural models have been proposed

first by Levin _2and then later by others _3,_-_7 that alkali, and specifically Cs adatoms forming

one-dimensional chains, reside on the raised sites of dimers of clean Si(100)2xl. Spiess et al _8

support the one-dimensional chain for Na on Si(100)2x I, but they consider Na atoms only to

be adsorbed on the cave sites. Recently, a double-layer model has been proposed by Abukawa

and Kono t9, where the alkali atoms are adsorbed on both the dimer sites and the trough sites



÷.
between the dimer rows (cave site or valley bridge site), and provide a saturation Cs coverage

of one monolayer.The surface atomic density of 1 monolayer of Cs on Si(100)2xl is
considered equal to that of the outermost layer of Si, Ns_ = 6.8x10 TMatoms, cm z

This study refers the adsorption of Cs on S-covered Si(100)2xl surfaces is investigated. The

properties of the above surface system has been studied using Auger electron spectroscopy

(AES) and low energy electron diffraction (LEED) . The kinetics, the mutual effects and the

structures of Cs and S during their coadsorption on Si(100)2xl have been discussed and are
reported.

II. EXPERIMENTAL

The experiments were performed in an ultra-high vacuum (UHV) chamber (p < 10 l° ton-),

equipped with a low energy electron diffraction (LEED) and a cylindrical mirror analyzer

(CMA) for AES measurements. The Si(100) substrate was cleaned by Ar+ bombardment at

E = 1 keV for 40 rain with an ion current of 10 mA. After bombardment the sample was heated

to 1000 °C by passing current through a 0.05 mm Ta strip, uniformly pressed between the

sample and a Ta foil case. The specimen temperature Ts was measured with a chromel-alumel

thermocouple, spot welded onto the sample holder. Elemental sulfur was deposited by thermal

dissociation of MoS2 single crystal flakes mounted on a tungsten filament. During dissociation

of MoS2 the Mo remained on the tungsten filament while S was evaporated. The pressure was

kept on the order of 10 "1° tOIT as the S was deposited on the surface. The Cs deposition was

done using a conventional alkali Getter source. The estimation of the S coverages on Si(100)

surfaces were based on the reported results 4 in correlation with our AES and LEED

measurements..

HI. RESULTS

1
/(

f

Fig. 1 shows the Auger peak to peak height ofCs(47 eV), S(151 eV) and Si(92 eV) vs Cs

deposition on 1 ML of S-covered Si(100)2xl surface, as compared to the Ap-pH of Cs (47

eV) vs Cs deposition on clean Si(100)2xl, shown with the dashed line.The Ap-pH of Cs on

clean Si, at first, increases linearly up to the third dose of Cs. At the third dose the slope of the

Ap-pH vs Cs dose-curve decreases substantially.The new slope is nearly constant up to the

ninth dose, where the Auger curve levels off, and the Cs coverage is saturated. When Cs was

deposited on 0.5 MLs of S-covered Si(100)2xl, the Auger peak (47 eV) curve forms also a
break between the second and third dose of Cs, and a second break between the seventh and

eighth dose. The Auger peak to peak height of Cs continues to increase with the increasing

number of Cs doses above the ninth dose,when Cs saturates on the clean Si(100)2xl surface.

The two breaks are formed slightly earlier than those on clean Si. This is within the limits of

the experimental error and we are not discussing. As it is shown in fig. 1 the Cs coverage on

S/Si(100) does not saturate at the ninth dose, but it forms a second layer. The most surprising

observation in fig. 1 is that the S(151 eV) peak height does not decrease with increasing

coverage of Cs on S-covered Si(100)2xl. This may suggest that the deposited Cs atoms do not

mask the preadsorbed atoms of sulfur.

Figure 2 shows the Auger peak to peak height of Cs(47 eV), S(151 eV) and Si(92 eV)

versus Cs deposition on 1 ML of S-covered Si(100)lxl surface. The preadsorbed monolayer

of S then increases the maximum amount of subsequently deposited Cs even more than that

of 0.5 ML of S. As in fig. I, the S(I 51 eV) peak does not decrease with the increasing number

of Cs doses. This may indicate that Cs and S adsorbates occupy independent surface sites

beeing directly bound to the Si substrate Possible displacement of S atoms to the top does not



agreewith recentwork functionmeasurements(not shownhere)Thefig. 2, however,exhibits
a substantialdifferencein comparisonto the previouscases.The first breakdoesnot exist,
while thesecondbreakappearsnearthefifth dose, when the first Cs layeris complited.This
indicatesthat theadsorptionsitesandthe natureof the bindingenergyareall the samewithin
thefirst Cslayeron therestoredS/Si(100)lxl surface.

Adsorptionof Cs on thecleanSi(100)2xl surfacedid not causeanysubstantialvariation
in theLEED pattern.In theearlystagesof Csdeposition on S-coveredSi(100)2xl, theLEED
patterndid not changesubstantially.The S structures,of the 0.5 MLs and 1ML or grater,
remainedwith the underlyingSi(100),retainingthe (2xl) reconstructionin the first caseand
the (lxl) restoration in the secondcase.With increasingnumberof Cs dosesabovethe
completionof thefirst Cs layer the background increases substantially. Gradual increase of the

temperature of the Cs/S/Si(100) surfaces initially decreases the background. In the case of the

0.5 MLs of S-covered on Si(100)2xl, the (2xl) pattern did not change; whereas, when the

sulfur coverage was 1 ML on the restored Si(100)lxl, the (lxl) pattern changes to a (2xl) at

about 550 °C. At this temperature, a substantial amount of sulfur is desorbed from the surface

and the restored Si(100) lxl structure changes back to the reconstructed Si(100)2xl.

IV. DISCUSSION

Based on a correlation of the existing literature, and our data we believe that the first break of

the Auger curves (Fig. 1) is due to the different sites ofCs adatoms before and after the break.

However, when Cs was deposited on I ML of S-covered restired S(100)Ixl surface we did

not observe the fist break (fig. 2). This is reasonable because now all the sites are similar and

the Cs atoms occupy the same kind of sites up to the competion of the first monolayer. Of

course, above 1 ML, the Cs atoms forming an other layer change the slope of the Auger curve,

which is characterstic of the layer by layer growth.The first monolayer of Cs atoms on the

reconstructed surface forms a wave-like configuration, with the atoms of the initial 0.5 ML to

reside on the raised sites of the dimers and the other half to reside deeper in the troughs. This

array of the Cs atoms on Si(100)2xl is actually the so called double-layer model, proposed by

Abukawa and Kono _9. According to this model the alkali atoms are adsorbed on both the

dimer sites and the trough sites between the dimer rows and provide a saturation coverage of 1

ML. The Cs atoms, up to 0.5 ML, reside on pedestal sites, and over 0.5 ML rest on valley

Bridge sites. Since then, several experimental 2°'2_ and theoretical 2z23 investigations supported

this model. The author feels that, during Cs deposition on 0.5 MLs of S-covered Si(100)2xl

surface, the Cs atoms reside on the same sites they occupied on clean Si(100)2xl. In this

model the Cs atoms do not displace the predeposited S atoms which occupy different sites.

The Cs atoms reside on the bridge sites between the dangling bonds (4). When Cs is

deposited on 1 ML of S-covered Si(100)lxl surface, all the Cs adatoms within the

monolayer are on the same plane, and the nature of the binding is the same.Thus, the Cs and S

atoms occupy different sites, without masking each other. This view is strongly supported by

the Auger measurements (figs 1 and 2) where the S(151 eV) peak heights do not decrease with

increasing amount of deposited Cs atoms on the S-covered Si(100) surface. In other words,

the emitted Auger electrons from the S atoms do not cross the Cs atoms on their way out.

Figs. 3 and 4, show schematic illustrations, side view and top view respectively, of the surface

structure of a Cs monolayer on (a) a clean Si(100)2xl, (b) a 0.5 MLs of S-covered the

reconstructed Si(100)2xl and © a 1 ML-covered the restored Si(100)lxl surfaceThe

multilayer formation of Cs on Si(100) surfaces at RT is very interesting , beceause it well

known that Cs forms only a single layer at RT on metals and semiconductors.
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Figure Caption



Figure. 1

Figure 2

Figures. 3

Figure. 4

Auger peak to peak height ofCs(47 eV), S(151 eV) and Si(92 eV) vs Cs

deposition on 1 ML of S-covered Si(100)2xl surface, as compared to the Ap-

pH of Cs (47 eV) vs Cs deposition on clean Si(100)2xl, shown with the dashed
line.

Auger peak to peak height of Cs(47 eV), S(151 eV) and Si(92 eV) versus Cs

deposition on 1 ML of S-covered Si(100)lxl surface.

Schematic illustrations of the side view of the surface structure of a Cs

monolayer on (a) a clean Si(100)2xl, (b) a 0.5 MLs of S-covered the

reconstructed Si(100)2xl and © a 1 ML-covered the restored Si(100)lxl surface.

Schematic illustrations of t the top view of of a Cs monolayer on (a) a clean

Si(100)2xl, (b) a 0.5 MLs of S-covered the reconstructed Si(100)2xl and © a 1

ML-covered the restored Si(100)lxl surface
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